・数智技术应用・

DOI:10.16105/j.dxdl.1672-6901.202405008

聚四氟乙烯/聚酰亚胺复合绝缘航空线载流量仿真

韩永进,朱 敏,张 振,刘旌平*

(上海电缆研究所有限公司 特种电缆技术国家重点实验室,上海 200093)

摘 要:聚四氟乙烯/聚酰亚胺复合绝缘航空线是飞机中用量较大的一类线缆,其载流量对飞机的电气线路互联系统(EWIS)设计具有极其重要的作用。基于电磁热多物理场耦合模型,采用 COMSOL 软件对 6 AWG、10 AWG、16 AWG 这 3 种规格的聚四氟乙烯/聚酰亚胺复合绝缘航空线进行载流量建模仿真,并与实测数据和 SAE AS50881H:2023 中的数据进行对比,验证仿真结果的正确性。该研究可为航空线缆 EWIS 设计提供一种简单有效的方法。

关键词:航空线;载流量;COMSOL软件;仿真 中图分类号:V221 文献标志码:A

文章编号:1672-6901(2024)05-0036-05

Current Carrying Capacity Simulation of PTFE/PI Combined Insulated Aerospace Wires

HAN Yongjin, ZHU Min, ZHANG Zhen, LIU Jingping*

(State Key Laboratory of Special Cable Technology, Shanghai Electric Cable Research Institute Co., Ltd., Shanghai 200093, China)

Abstract: PTFE/PI combined insulated aerospace wires are extensively used in aerospace vehicles, and current carrying capacity is an important factor for the design of electrical wiring interconnection system(EWIS). Based on multi-physics coupled model, three specifications of wires, 6 AWG, 10 AWG and 16 AWG, were chosen to simulate current carrying capacity by COMSOL. Besides, simulation results were compared with measured data and the data from SAE AS50881H: 2023, to verify the correctness of simulation. The study could provide a reference for the design of aviation EWIS without numbers of experiments.

Key words: aerospace wires; current carrying capacity; COMSOL; simulation

0 引 言

载流量是指在特定的工况条件下,电缆能够连 续承载而不使其稳定温度超过规定值的最大电流。 电线电缆的载流量除受到本身材料的制约外,还受 敷设方式、环境、海拔等众多因素的影响。近年来, 关于中高压电缆的载流量仿真研究较多,而关于航 空线缆的载流量仿真研究鲜有报道^[1-9]。

随着 C919 飞机的国产化,以及适航认证的要求,适航中心要求设计者提供相应的验证数据。由于飞行器结构复杂、运行环境苛刻,需要进行大量的试验验证。因此,设计者希望能够对电线电缆的相关参数进行模拟仿真,以减少长期繁重的试验。目前,航空线缆的允许载流量一般参照 HB 5795—

收稿日期:2024-03-19

作者简介:韩永进(1982—),男,高级工程师。

* 通信作者:liujingping@secri.com

2023《航空电线载流量》和 SAE AS50881H:2023 《航空航天器布线》^[10-11],标准中给出了单线载流 量,以及高度修正系数、成束修正系数、线束负荷 率等参数,由此可计算出线束在不同海拔的载流 量。由于实际工况和设计方式复杂多变,标准中 的数据无法满足实际应用需求,这就需要重新进 行试验验证。

因此,本工作选取 M22759/87-6-9、M22759/87-10-9、M22759/87-16-9 这 3 种规格的聚四氟乙烯/聚 酰亚胺(PTFE/PI)复合绝缘航空线,采用 COMSOL 软件建立电磁热多物理场耦合的载流量仿真模型, 期望为航空线缆的设计选用提供方法和依据。

1 试 验

1.1 试验样品

试验样品为 M22759/87-6-9、M22759/87-10-9、 M22759/87-16-9 这 3 种规格的线缆,样品符合美国 航空线缆标准 SAE AS22759/87E:2022^[12],线缆采用 PTFE/PI/PTFE 复合带和 PTFE 带复合绝缘结构,导体材料为镀镍铜,绝缘材料为 PI、PTFE,结构示意图见图 1,结构尺寸见表 1。

PTFE/PI/PTFE复合带

PTFE带 PTFE带 (a) M22759/87-6-9

PTFE/PIPTFE复合带

(b) M22759/87-10-9和M22759/87-16-9

图 1 线缆结构示意图

─────────────────────────────────────	表 1	线缆样品结构参数
---------------------------------------	-----	----------

型号	导体外径/mm	绝缘厚度/mm	线缆外径/mm
M22759/87-6-9	5.10	0.23	5.56
M22759/87-10-9	2.74	0.20	3.13
M22759/87-16-9	1.31	0.20	1.72

1.2 载流量试验

试验设备:高温热电偶、正弦脉宽调制(SPWM)直流稳定电源、温湿度计。

试验方法:控制环境温度为(25±2)℃,将处理 好的样品置于玻璃罩中心位置,玻璃罩为圆筒状有 机玻璃,内径为 50 mm;电缆两端接在电源接线柱 上,参照 SAE AS50881H:2023 中的载流量试验方 法,逐渐提高电缆两端电压,最终使导体温度稳定在 260 ℃,记录导体温度和电流随时间的变化情况。 试验装置见图 2。

图 2 载流量试验装置

1.3 仿真模型

采用 COMSOL 的电磁热多物理场耦合模型 对航空线缆的载流量进行仿真,其物理原理是,当 电缆通入交流电流后,电缆周围会产生稳定的电 磁场,用麦克斯韦方程组的微分形式表示^[13]。公式(1)为法拉第电磁感应定律,公式(2)为安培环路定律,公式(3)为高斯定理,公式(4)为磁通连续性定理。

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} \tag{1}$$

$$\nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}$$
(2)

$$\nabla \cdot \boldsymbol{D} = \boldsymbol{\rho}_{q} \tag{3}$$

$$\nabla \cdot \boldsymbol{B} = 0 \tag{4}$$

式中:∇为向量微分算符;E 为电场强度, $V \cdot m^{-1}$;H 为磁场强度, $A \cdot m^{-1}$;D 为电通量密度, $C \cdot m^{-2}$;B 为 磁感应强度,也被称为磁通密度,T;J 为电流密度, $A \cdot m^{-2}$;t 为时间,s; ρ_a 为电荷体密度, $C \cdot m^{-3}$ 。

根据电磁学理论,在各向同性的介质中,还存在 公式(5)~公式(7)这3个本构方程可作为辅助方程。

$$\boldsymbol{D} = \boldsymbol{\varepsilon} \boldsymbol{E} \tag{5}$$

$$\boldsymbol{B} = \boldsymbol{\mu} \boldsymbol{H} \tag{6}$$

$$\boldsymbol{J} = \boldsymbol{\sigma} \boldsymbol{E} \tag{7}$$

式中: ε 为介质的介电常数, $\mathbf{F} \cdot \mathbf{m}^{-1}$; μ 为介质的磁 导率, $\mathbf{H} \cdot \mathbf{m}^{-1}$; σ 为材料的电导率, $\mathbf{S} \cdot \mathbf{m}^{-1}$ 。

在本模型中,电缆通过 400 Hz 的交流电流,所 产生的电场和磁场随时间呈正弦变化,称为时变电 磁场。时变电磁场的电磁损耗转化为热量。本模型 中的磁损耗可以忽略,主要为电损耗,计算公式为

$$Q_{\rm rh} = \frac{1}{2} \operatorname{Re} \left[\left(\boldsymbol{J} + j \boldsymbol{\omega} \boldsymbol{D} \right) \cdot \boldsymbol{E}^* \right]$$
(8)

式中: Q_{rh} 为电损耗,W·m⁻³;Re 为取复数实部的符号;j为虚数,j² = -1; ω 为角频率,rad·s⁻¹; E^* 为电场强度的共轭复数。

根据傅里叶定律和通量守恒定律,可以得到电 损耗作为热源的传热微分方程为

$$\rho C_p \frac{\partial T}{\partial t} - \nabla \cdot (k \nabla T) = Q_{\rm rh}$$
⁽⁹⁾

式中: ρ 为材料密度, kg·m⁻³; C_p 为材料的比热容, J·(kg·K)⁻¹; T 为热力学温度, K; k 为材料的导热系数, W·(m·K)⁻¹。

电缆中由电磁损耗产生的热量向外扩散,形成 温度场,温度又反过来影响材料的本体参数,引起电 导率的变化,电磁损耗也随之变化。电磁场与热场 形成了一个双向耦合的系统。

根据线缆的材料和结构尺寸参数,应用 COMSOL软件对3种规格的航空线缆进行建模,结 构模型见图3。

采用 COMSOL 的电磁热多物理场耦合接口、

频域-瞬态研究模型进行载流量仿真,激励电流采用 1.2 节中载流量的试验结果和 SAE AS50881H:2023

中的载流量,频率为 400 Hz,具体仿真条件参数设置见表 2。

表 2 仿真条件参数设置

型号	激励电	且流/A	调	加払沮産/℃	模式	仿真时长/min
	截流量试验电流	标准中电流	回归反 / 70	忉知血反/℃		
M22759/87-6-9	210.4	214	80	23. 5	自然对流	30
M22759/87-10-9	108. 1	105	67	25. 2	自然对流	30
M22759/87-16-9	46.7	43	71	25.8	自然对流	30

2 结果与讨论

2.1 载流量试验结果

载流量试验结果见表 3。由表 3 可知,当试验时间达到 25 min 时,线缆导体与环境达到热平衡,

温度区域稳定,取 25 min 时的数据作为试验结果。 其中,M22759/87-6-9 在导体温度达到 260 ℃时的 电流为 210.4 A;M22759/87-10-9 在导体温度达到 260 ℃时的电流为 108.1 A;M22759/87-16-9 在导 体温度达到 259 ℃时的电流为 46.7 A。

表 3 载流量试验结果

时间/min	M22759/87-6-9		M22759/8	7-10-9	M22759/87-16-9	
	导体温度/℃	电流/A	导体温度/℃	电流/A	导体温度/℃	电流/A
0	25	0	25	0	25	0
5	132	174.0	187	109.0	183	45.0
10	240	213.0	236	110.0	206	45.1
15	247	211.0	253	108.5	235	45. 1
20	260	210.5	260	108.0	258	46. 7
25	260	210.4	260	108.1	259	46. 7

2.2 仿真结果

将 2.1 节中载流量试验的稳态电流作为激励电 流进行仿真。3 种规格航空线的温升曲线和达到稳 态时的温度场分布图见图 4~图 6,仿真结果见表 4。 由表 4 可知,达到稳态后,M22759/87-6-9 的导体温 度为 247.2 ℃; M22759/87-10-9 的导体温度为 274.6 ℃;M22759/87-16-9 的导体温度为 304.0 ℃。

2.3 结果分析

将试验结果、仿真结果,以及 SAE AS50881H: 2023 中的载流量数据进行对比,结果见表 5。其中, ·38 · 仿真以载流量试验得到的电流为激励电流,进而计 算出稳态时的导体温度;SAE AS50881H:2023 中的 数据假定温度或电流为已知条件,由标准中给出的 温升-电流曲线查得对应的电流或导体温度。

由表 5 可知, M22759/87-6-9、M22759/87-10-9、 M22759/87-16-9 这 3 种规格的航空线在电流为 210.4,108.1,46.7 A 时, 仿真得到的导体温度分别 为 247.2,274.6,304.0 ℃, 而从 SAE AS50881H: 2023 中查得的导体温度分别为 246,271,305 ℃。 由此可见, 仿真数据与载流量试验数据(260,260,

M22759/		/87-6-9	M22759/	87-10-9	M22759/87-16-9	
游闹/ mm 激励电流/A	激励电流/A	导体温度/℃	激励电流/A	导体温度/℃	激励电流/A	导体温度/℃/℃
0		67.8	120. 9		228.0	
5		188. 2		269.1		304.2
10		241.4		275.0		304.0
15	210.4	248.6	108.1	274.6	46.7	304.0
20		247.7		274.6		304.0
25		247.3		274.6		304.0
30		247.2		274.6		304.0

259 ℃)差别较大,但与 SAE AS50881H:2023 中的 数据具有较好的一致性。同时,在导体温度为 260

℃时, SAE AS50881H: 2023 中给出的 M22759/87-6-9、M22759/87-10-9、M22759/87-16-9 这 3 种规格航

2024 年第 5 期	电线电缆	2024年10月
No. 5 2024	Wire & Cable	Oct., 2024

空线的载流量分别为214,105,43 ℃,这也与载流量 试验数据存在差异。这可能是由于载流量试验中的 环境温度、热电偶探头的设置,以及环境空气对流影 响而造成的试验误差^[14]。不同规格导线的发热量 不同,受热电偶探头和试验环境空气对流的影响也 不同。特别是截面面积较小的 M22759/87-16-9 导 线,受到试验条件的影响更加明显,导致导体温度达 到稳态时与标准数据差异较大。

表 5 试验结果、仿真结果和标准数据的对比

刑旦	载流量试验数据		仿真数据		SAE AS50881H:2023 数据			
至 5	导体温度/℃	电流/A	激励电流/A	导体温度/℃	假定电流/A	导体温度/℃	假定导体温度/℃	电流/A
M22759/87-6-9	260	210. 4	210.4	247. 2	210.4	246	260	214
M22759/87-10-9	260	108.1	108.1	274.6	108.1	271	260	105
M22759/87-16-9	259	46.7	46.7	304.0	46.7	305	260	43

为进一步验证仿真模型的可靠性,以 SAE AS50881H:2023中的数据为依据:当导体温度达到 额定温度 260 ℃时,M22759/87-6-9、M22759/87-10-9、M22759/87-16-9 对应的电流分别为 214,105, 43 A。以此为激励电流,重新进行仿真计算,由此 得到的导体温度分别为 256,260,259 ℃,见表 6。 这与 SAE AS50881:2023 中给出的温升-电流数据 基本一致,表明基于电磁热多物理场耦合模型的载 流量仿真模型具有较高的可靠性。

표비된	激励电流/	导体温度/℃		
2 5	А	SAE AS50881H:2023	仿真	
M22759/87-6-9	214	260	256	
M22759/87-10-9	105	260	260	
M22759/87-16-9	43	260	259	

表 6 仿真结果与标准数据对比

3 结 论

本文采用 COMSOL 软件对 M22759/87-16-9、 M22759/87-10-9、M22759/87-6-9 这 3 种规格航空 线进行载流量建模仿真,并与实测数据和标准数据 进行对比。

1) 载流量实测结果表明,在环境温度为(25±2)℃条件下,当导体温度分别为 260,260,259 ℃
 时, M22759/87-6-9、M22759/87-10-9、M22759/87-16-9 对应的载流量分别为 210.4,108.1,46.7 A。

2) COMSOL 仿真结果表明,基于电磁热多物理 场耦合模型的载流量仿真模型得到的电缆温升数据 与 SAE AS50881H: 2023 中的数据一致性较好,仿 真结果具有较高的可靠性。

3) 基于电磁热多物理场耦合模型的 PTFE/PI

复合绝缘航空线载流量仿真,为航空电气线路互联 系统(EWIS)设计提供了简便的方法和数据支撑。

参考文献:

- [1] 王兰,李仁鹏. 浅析航空电线电缆载流量计算[J]. 广东科技, 2016, 25(10): 50-51.
- [2] 石大城,李乾,余志强,等.基于电磁-热-流体耦合的隧道敷
 设电缆载流量分析[J]. 绝缘材料,2022,55(12):111-118.
- [3] 韩啸,刘雄军,狄洪杰,等.基于多物理场耦合技术的电缆 载流量修正[J].计算机仿真,2023,40(6):381-387.
- [4] 威家伟.基于有限元法的电缆温度场与载流量分析[J].华 电技术,2018,40(12):36-39.
- [5] 罗楚军,杨帆,李健,等.长距离隧道敷设电缆载流量仿真 计算方法研究[J].电工技术,2021(23):41-45.
- [6] 李红发, 王荣鹏, 罗应文, 等. 电缆线路载流量计算的热场 仿真法研究[J]. 新型工业化, 2020, 10(1): 49-54.
- [7] 曲名新,邓少平,翟学,等.基于电-热-流多场耦合仿真的海 底电缆载流量分析[J].电力勘测设计,2022(7):17-24.
- [8] 赵莹莹,纪航,王逊峰,等.电力电缆载流量计算方法综述
 [J].电力与能源,2022,43(4):299-303.
- [9] 吴冰洁,丁苒苒,陈晨,等. 220 kV 交联海缆的低频载流能 力及温度场分布仿真研究[J]. 绝缘材料, 2023, 56(12): 34-42.
- [10] 工业和信息化部. 航空电线载流量: HB 5795-2023[S]. 北京:工业和信息化部, 2023.
- [11] SAE International. Wiring aerospace vehicle: SAE AS50881H: 2023[S]. Warrendale: SAE International, 2023.
- SAE International. Wire, electrical, polytetrafluoroethylene/ polyimide insulated, normal weight, nickel coated, copper conductor, 260 °C, 600 volts: SAE AS22759/87E:2022[S].
 Warrendale: SAE International, 2022.
- [13] 倪光正.工程电磁场原理[M].2版.北京:高等教育出版 社,2009.
- [14] 韩啸,宋鹏,刘雄军,等. 载流量试验误差分析及数据可靠 性研究[J]. 电线电缆, 2021(1): 31-34.