Citation: | BA X X, ZHANG H F, HUO H, et al. Research on distributed capacitance of ultra-long control cables for relay protection[J]. Wire & Cable, 2025, 68(4): 57-62. DOI: 10.16105/j.dxdl.1672-6901.20240096 |
In practice, cable length is mainly determined based on engineering experience. If the control cable is too long, protection malfunction may be happened due to distributed capacitance. In order to clarify the influence of cable distributed capacitance on a given length and summarize demonstration methods for cable length selection, taking an 800 m 4-core control cable as the research object, a distributed capacitance model of cable was established, and two testing methods for distributed capacitance were introduced. MATLAB simulation was also used to verify the feasibility of previous measurement methods. An electrical circuit model for control cables and relays based on calculated capacitance values was establish, and the impact of capacitance on the first-order and second-order voltage response process was calculated to demonstrate the possibility of relay action. Grounding short circuit faults were simulated by existing protective devices, the impact of AC entering DC was analyzed, and the effect of cable voltage drop was also calculated. In summary, the feasibility of using ultra long control cables for relay protection could be presented.
[1] |
常继凯, 舒勤, 李鸿鑫, 等. 计及电缆分布电容的并网逆变器谐振特性与抑制[J]. 电力科学与技术学报, 2023, 38(3): 114-123. DOI: 10.19781/j.issn.1673-9140.2023.03.012
CHANG J K, SHU Q, LI H X, et al. Resonance characteristics and suppression of grid-connected inverter system considering cable distributed capacitance[J]. Journal of Electric Power Science and Technology, 2023, 38(3): 114-123. DOI: 10.19781/j.issn.1673-9140.2023.03.012
|
[2] |
黄玥, 范春菊, 王国钰. 超长海底电缆电流差动保护新方案[J]. 现代电力, 2024, 41(3): 584-592. DOI: 10.19725/j.cnki.1007-2322.2022.0298
HUANG Y, FAN C J, WANG G Y. New scheme of current differential protection for ultra-long submarine cable[J]. Modern Electric Power, 2024, 41(3): 584-592. DOI: 10.19725/j.cnki.1007-2322.2022.0298
|
[3] |
黄玥, 范春菊, 冯伟. 长距离电力电缆的距离保护研究[J]. 电力科学与技术学报, 2023, 38(3): 166-173. DOI: 10.19781/j.issn.1673-9140.2023.03.018
HUANG Y, FAN C J, FENG W. Research on distance protection of long-distance power cables[J]. Journal of Electric Power Science and Technology, 2023, 38(3): 166-173. DOI: 10.19781/j.issn.1673-9140.2023.03.018
|
[4] |
张丽艳, 罗博, 郑兴. 新型电缆贯通供电系统短路特性分析[J]. 西南交通大学学报, 2025, 60(1): 147-155.
ZHANG L Y, LUO B, ZHENG X. Short-circuit characteristics analysis of new continuous cable traction power supply system[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 147-155.
|
[5] |
王晓明. 一起分布电容引起控制回路开关量异常的原因分析及处理[J]. 电工材料, 2021(5): 35-37. DOI: 10.16786/j.cnki.1671-8887.eem.2021.05.009
WANG X M. The analysis and processing of the abnormal switching volume in control loop caused by distributed capacitance[J]. Electrical Engineering Materials, 2021(5): 35-37. DOI: 10.16786/j.cnki.1671-8887.eem.2021.05.009
|
[6] |
陈畅, 杨洪耕. 风火打捆半波长交流输电系统的谐振分析[J]. 电力自动化设备, 2019, 39(2): 50-57. DOI: 10.16081/j.issn.1006-6047.2019.02.008
CHEN C, YANG H G. Harmonic resonance analysis for wind-thermal-bundled half-wavelength AC transmission system[J]. ELectric Power Automation Equipment, 2019, 39(2): 50-57. DOI: 10.16081/j.issn.1006-6047.2019.02.008
|
[7] |
李昊, 李豪杰, 原红伟, 等. 分布电容对引信共线装定系统信息传输特性的影响及其优化[J]. 兵工学报, 2024, 45(1): 319-327.
LI H, LI H J, YUAN H W, et al. Influence of distributed capacitance on information transmission characteristics of collinear setting system of fuze and its optimization[J]. Acta Armamentarii, 2024, 45(1): 319-327.
|
[8] |
叶远波, 王吉文, 汪胜和, 等. 计及故障点两侧零序电流相位差的新能源送出线路接地故障时域距离保护研究[J]. 电力系统保护与控制, 2023, 51(20): 180-187. DOI: 10.19783/j.cnki.pspc.236141
YE Y B, WANG J W, WANG S H, et al. Time domain distance protection of new energy transmission line grounding fault considering the phase difference of zero sequence current on both sides of the fault point[J]. Power System Protection and Control, 2023, 51(20): 180-187. DOI: 10.19783/j.cnki.pspc.236141
|
[9] |
刘乃皓, 高厚磊, 徐彬, 等. 基于电流变化量相似性的海上风电场交流送出线路纵联保护[J]. 电力系统保护与控制, 2023, 51(9): 65-75. DOI: 10.19783/j.cnki.pspc.221055
LIU N H, GAO H L, XU B, et al. Pilot protection for an AC transmission line of an offshore wind farm based on similarity of current variation[J]. Power System Protection and Control, 2023, 51(9): 65-75. DOI: 10.19783/j.cnki.pspc.221055
|
[10] |
QIAN Y C, YANG B, ZENG K D, et al. Analysis and evaluation of distributed capacitance of multiple cables on secondary circuit[J]. Frontiers in Energy Research, 2022, 10: 963010. DOI: 10.3389/fenrg.2022.963010
|
[11] |
YU J B, WANG C R, WANG Y, et al. Investigation on stray-capacitance influences of coaxial cables in capacitive transducers for a space inertial sensor[J]. Sensors, 2020, 20(11): 3233. DOI: 10.3390/s20113233
|
[12] |
刘怀宇, 陈昊, 谭风雷, 等. 控制电缆分布参数对变电站开关场电磁继电器的影响仿真[J]. 电气自动化, 2024, 46(2): 106-108.
LIU H Y, CHEN H, TAN F L, et al. Simulation of the influence of control cable distribution parameters on electromagnetic relay in substation switch field[J]. Electrical Automation, 2024, 46(2): 106-108.
|
[13] |
林祥辉, 王皓, 邵安海. 长电缆对地分布电容对控制回路的影响分析及解决方案[J]. 电线电缆, 2023(5): 42-46. DOI: 10.16105/j.dxdl.1672-6901.202305010
LIN X H, WANG H, SHAO A H. Analysis and solution of the influence of distributed ground capacitance of long cable on control loop[J]. Wire & Cable, 2023(5): 42-46. DOI: 10.16105/j.dxdl.1672-6901.202305010
|
[14] |
吕军蓉, 闫茂华, 吴志宇. 电缆对地分布电容对控制回路的影响分析[J]. 电工技术, 2020(3): 96-98. DOI: 10.19768/j.cnki.dgjs.2020.03.033
LYU J R, YAN M H, WU Z Y. Analysis on the influence of cable distributed capacitance to ground on control circuit[J]. Electric Engineering, 2020(3): 96-98. DOI: 10.19768/j.cnki.dgjs.2020.03.033
|
[15] |
乔中伟, 钱敏, 郭松伟, 等. 二次电缆对地分布电容对强电开入回路的影响研究[J]. 电力系统保护与控制, 2018, 46(13): 161-165.
QIAO Z W, QIAN M, GUO S W, et al. Research on influence of secondary cable distributed capacitance on high voltage input circuit[J]. Power System Protection and Control, 2018, 46(13): 161-165.
|
[16] |
雷兴, 潘学萍, 孙彬, 等. 电缆分布电容对出口继电器动作的影响分析及应对措施[J]. 电力系统自动化, 2017, 41(15): 170-175.
LEI X, PAN X P, SUN B, et al. Analysis on influence of distributed capacitance of cables on export relay and relevant measures[J]. Automation of Electric Power Systems, 2017, 41(15): 170-175.
|
[17] |
殷时蓉. 基于Volterra级数和神经网络的非线性电路故障诊断研究[D]. 成都: 电子科技大学, 2007.
YIN S R. Study on fault diagnosis for nonlinear circuit based on Volterra series and neutral networks[D]. Chengdu: University of Electronic Science and Technology of China, 2007.
|